隐函数求导

隐函数的类型
一个方程情形
二元方程
设函数在点的某一领域内具有连续偏导数,且
-
-
注:相应的
则方程在点的某一领域内恒能唯一确定
一个连续且有连续偏导的函数,它满足,且
\begin{align}\frac{dy}{dx}=-\frac{F_{x}}{F_{y}}\end{align}
指的是二元函数对的偏导数
例题
三元函数
设函数在点的某一领域内具有连缘偏导数,且
-
-
注:相应的同理
则方程在点的某一领域中恒能唯一确定一个连续且具有连续偏导数的函数,满足且
\begin{align}&\frac{\partial z}{\partial x}=-\frac{F_{x}}{F_{z}}\\&\frac{\partial z}{\partial y}=-\frac{F_{y}}{F_{z}}\end{align}
例题
已知设,求
设,则。当时,应得
\begin{align}\frac{\partial z}{\partial x}=-\frac{F_{x}}{F_{z}}=\frac{x}{2-z}\end{align}
再一次对求偏导数(需要把看做,不要把看做常数),得
\begin{align}\frac{\partial^{2}z}{\partial x^{2}}=\frac{(2-z)+x\frac{\partial z}{\partial x}}{(2-z)^{2}}=\frac{(2-z)+x\left(\frac{x}{2-z}\right)}{(2-z)^{2}}=\frac{(2-z)^{2}+x^{2}}{(2-z)^{3}}\end{align}
方程组情形
四元方程组
设在点的某一领域内具有对各个变量的连续偏导数且
-
-
对的雅可比(Jacobi)行列式在处不为0
\begin{align}J=\frac{\partial(F,G)}{\partial(u,v)}=\left|\begin{array}{ll}F_{u}&F_{v}\\G_{u}&G_v\end{array}\right|\neq0\end{align}
则方程组在的某领域内能唯一确定一组连续且有连续偏导数的函数,满足且
\begin{align}&\frac{\partial u}{\partial x}=-\frac{1}{J} \frac{\partial(F, G)}{\partial(x, v)}=-\frac{\left|\begin{array}{ll}F_{x} & F_{v} \\G_{x}&G_{v}\end{array}\right|}{\left|\begin{array}{cc}F_{u} & F_{v} \\G_{u} & G_{v}\end{array}\right|}\\&\frac{\partial v}{\partial x}=-\frac{1}{J} \frac{\partial(F, G)}{\partial(u, x)} \\&\frac{\partial u}{\partial y}=-\frac{1}{J} \frac{\partial(F, G)}{\partial(y, v)}\\& \frac{\partial v}{\partial y}=-\frac{1}{J} \frac{\partial(F, G)}{\partial(u, y)} \end{align}
例题
设,求和
将所给方程的两边对求导并移项,得
\begin{align}\{\begin{array}{l} x \frac{\partial u}{\partial x}-y \frac{\partial v}{\partial x}=-u \\ y \frac{\partial u}{\partial x}+x \frac{\partial v}{\partial x}=-v \end{array}\end{align}
在 的条件下
\begin{align}\begin{array}{l} \frac{\partial u}{\partial x}=\frac{\left|\begin{array}{rr} -u & -y \\ -v & x \end{array}\right|}{\left|\begin{array}{rr} x & -y \\ y & x \end{array}\right|}=-\frac{x u+y v}{x^{2}+y^{2}} \\ \frac{\partial v}{\partial x}=\frac{\left|\begin{array}{rr} x & -u \\ y & -v \end{array}\right|}{\left|\begin{array}{rr} x & -y \\ y & x \end{array}\right|}=\frac{y u-x v}{x^{2}+y^{2}} \end{array}\end{align}
将所给方程的两边对求导。用同样方法在的条件下可得
\begin{align}\frac{\partial u}{\partial y}=\frac{x v-y u}{x^{2}+y^{2}}, \quad \frac{\partial v}{\partial y}=-\frac{x u+y v}{x^{2}+y^{2}}\end{align}