多元函数微分的几何应用

一元向量值函数及其导数
一元向量值函数
由空间解析几何知道,空间曲线的参数方程为
\begin{align}\left\{\begin{array}{l}x=\varphi(t), \\y=\psi(t), \quad t \in[\alpha, \beta] \\z=\omega(t),\end{array}\right.\end{align}
方程也可以写成向量形式。若记
\begin{align}\vec{r}=x \vec{i}+y \vec{j}+z \vec{k}, \quad \vec{f}(t)=\varphi(t) \vec {i}+\psi(t) \vec{j}+\omega(t) \vec{k}\end{align}
则方程就成为向量方程
\begin{align}\vec{r}=\vec{f}(t), t \in[\alpha, \boldsymbol{\beta}] \end{align}
定义
设数集,则称映射为一元向量值函数,通常记为
\begin{align}\vec{r}=\vec{f}(t),t\in D\end{align}
其中数集称为函数的定义域,称为自变量,称为因变量
向量值函数与数量函数的关系
数量函数
- 一元函数:
- 多元函数:
向量值函数
- 一元向量值函数:
- 多元向量值函数:
一元向量值函数的极限
定义
设向量值函数在点的某一去心邻域内有定义,如果存在一个常向量,对于任意给定的正数,总存在正数,使得当满足时,对应的函数值都满足不等式
\begin{align}|\vec{f}(t)-\vec{r}_{0}|<\varepsilon\end{align}
那么,常向量就叫做向量值函数当时的极限,记作
\begin{align}\lim_{t \to t_0} \vec{f}(t)=\vec{r}_0\end{align}
一元向量值函数的导数
定义
设向量值函数在点的某一邻域内有定义,如果
\begin{align}\lim _{\Delta t \rightarrow 0} \frac{\Delta \vec{r}}{\Delta t}=\lim _{\Delta t \rightarrow 0} \frac{\vec{f}\left(t_{0}+\Delta t\right)-\vec{f}\left(t_{0}\right)}{\Delta t}\end{align}
存在,那么就称这个极限向量为向量值函数在处的导数或导向量,记作或
运算法则
设、是可导的向量值函数,是常向量,是任一常数,是可导的数量函数,则
例题
设,求及
解
\begin{align} \lim _{t \rightarrow \frac{\pi}{4}} \vec{f}(t) & =\left(\lim _{t \rightarrow \frac{\pi}{4}} \cos t\right) \vec{i}+\left(\lim _{t \rightarrow \frac{\pi}{4}} \sin t\right) \vec{j}+\left(\lim _{t \rightarrow \frac{\pi}{4}} t\right) \vec{k} \\ & =\frac{\sqrt{2}}{2} \vec{i}+\frac{\sqrt{2}}{2} \vec{j}+\frac{\pi}{4} \vec{k} \\\vec{f}'(t)&=(\cos t)' \vec{i}+(\sin t)'\vec{j}+(t)'\vec{k}\\&=(-\sin t)\vec{i}+(\cot)\vec{j}+\vec{k}\end{align}
设空间曲线的向量方程为:,求曲线在与相应的点处的单位切向量。
\begin{align}&\vec{f}^{\prime}(t)=(2 t, 4,4 t-6) , t \in R\\&\vec{f}^{\prime}(2)=(4,4,2)=2(2,2,1) \\ &\overrightarrow{T}=(2,2,1),|\overrightarrow{T}|=\sqrt{2^{2}+2^{2}+1}=3\end{align}
由导向量的几何意义知,曲线在与相应的点处的一个单位切向量是,其指向与t的增长方向一致;另一个单位切向量是,其指向与t的增长方向相反
空间曲线的切线与法平面
第一种形式
求曲线与点处的切线与法平面,记。点对应参数
切向量
\begin{align}\overrightarrow{T}=\vec {f}^{\prime}\left(t_{0}\right)=\left(\varphi^{\prime}\left(t_{0}\right),\psi^{\prime}\left(t_{0}\right),\omega^{\prime}\left(t_{0}\right)\right)\end{align}
切线方程
\begin{align}\frac{x-x_{0}}{\varphi^{\prime}\left(t_{0}\right)}=\frac{y-y_{0}}{\psi^{\prime}\left(t_{0}\right)}=\frac{z-z_{0}}{\omega^{\prime}\left(t_{0}\right)}\end{align}
法平面方程
\begin{align}\varphi^{\prime}\left(t_{0}\right)\left(x-x_{0}\right)+\psi^{\prime}\left(t_{0}\right)\left(y-y_{0}\right)+\omega^{\prime}\left(t_{0}\right)\left(z-z_{0}\right)=0\end{align}
例题
求曲线在点处的切线及法平面方程
因为,而点所对应的参数。所以切向量
\begin{align}\overrightarrow{T}=(1,2,3)\end{align}
切线方程为
\begin{align}\frac{x-1}{1}=\frac{y-1}{2}=\frac{z-1}{3}\end{align}
法平面方程为
\begin{align}(x-1)+2(y-1)+3(z-1)=0\end{align}
化简后得
\begin{align}x+2y+3z=6\end{align}
第二种形式
如果空间曲线的方程以下列的形式给出
\begin{align}\left\{\begin{array}{l}y=\varphi(x)\\z=\psi(x)\end{array}\right.\end{align}
设为曲线方程上的一点求过点的切线及其法平面方程,取为参数,它就可以表示为参数方程的形式
\begin{align}\left\{\begin{array}{l}x=x\\y=\varphi(x)\\z=\psi(x)\end{array}\right.\end{align}
点对应参数。则根据上面的讨论可知,,因此曲线在点处的切线方程为
\begin{align}\frac{x-x_{0}}{1}=\frac{y-y_{0}}{\varphi^{\prime}\left(x_{0}\right)}=\frac{z-z_{0}}{\psi^{\prime}\left(x_{0}\right)}\end{align}
在点处的法平面方程为
\begin{align}\left(x-x_{0}\right)+\varphi^{\prime}\left(x_{0}\right)\left(y-y_{0}\right)+\psi^{\prime}\left(x_{0}\right)\left(z-z_{0}\right)=0\end{align}
第三种形式
设空间曲线的方程以下列的形式给出
\begin{align}\left\{\begin{array}{l}F(x,y,z)=0\\G(x,y,z)=0\end{array}\right.\end{align}
是曲线上的一个点,求过的切线和法平面方程。设和有对各个变量的连续偏导数,且在点的某一邻域内确定了一组函数则
\begin{align}\begin{array}{l}F[x,\varphi(x),\psi(x)]\equiv0\\G[x,\varphi(x),\psi(x)]\equiv0\end{array}\end{align}
两边分别对求全导数
\begin{align}\left\{\begin{array}{l} \frac{\partial F}{\partial x}+\frac{\partial F}{\partial y} \frac{\mathrm{d} y}{\mathrm{~d} x}+\frac{\partial F}{\partial z} \frac{\mathrm{d} z}{\mathrm{~d} x}=0 \\ \frac{\partial G}{\partial x}+\frac{\partial G}{\partial y} \frac{\mathrm{d} y}{\mathrm{~d} x}+\frac{\partial G}{\partial z} \frac{\mathrm{d} z}{\mathrm{~d} x}=0 \end{array}\right.\end{align}
由假设可知,在点的某个邻域内
\begin{align}J=\frac{\partial(F, G)}{\partial(y, z)} \neq 0\end{align}
故可解得
\begin{align}\frac{\mathrm{d} y}{\mathrm{~d} x}=\varphi^{\prime}(x)=\frac{\left|\begin{array}{ll}F_{z} & F_{x} \\G_{z} & G_{x}\end{array}\right|}{\left|\begin{array}{ll}F_{y} & F_{z} \\G_{y} & G_{z}\end{array}\right|}, \frac{\mathrm{d} z}{\mathrm{~d} x}=\psi^{\prime}(x)=\frac{\left|\begin{array}{ll}F_{x} & F_{y} \\G_{x} & G_{y}\end{array}\right|}{\left|\begin{array}{ll}F_{y} & F_{z} \\G_{y} & G_{z}\end{array}\right|}\end{align}
切向量
\begin{align}\overrightarrow{T}=\left(1,\varphi^{\prime}\left(x_{0}\right),\psi^{\prime}\left(x_{0}\right)\right)\end{align}
分子分母中带下标的行列式表示行列式在点的值。把上面的切向量乘,得
\begin{align}\overrightarrow{T}_{1}=\left(\left|\begin{array}{ll} F_{y} & F_{z} \\ G_{y} & G_{z} \end{array}\right|_{M},\left|\begin{array}{ll} F_{z} & F_{x} \\ G_{z} & G_{x} \end{array}\right|_{M},\left|\begin{array}{ll} F_{x} & F_{y} \\ G_{x} & G_{y} \end{array}\right|_{M}\right)\end{align}
这也是曲线在点处的一个切向量。
由此可写出曲线在点处的切线方程为
\begin{align}\frac{x-x_{0}}{\left|\begin{array}{cc} F_{y} & F_{z} \\ G_{y} & G_{z} \end{array}\right|_{M}}=\frac{y-y_{0}}{\left|\begin{array}{cc} F_{z} & F_{x} \\ G_{z} & G_{x} \end{array}\right|_{M}}=\frac{z-z_{0}}{\left|\begin{array}{cc} F_{x} & F_{y} \\ G_{x} & G_{y} \end{array}\right|_{M}}\end{align}
曲线在点处的法平面方程为
\begin{align}\left|\begin{array}{ll} F_{y} & F_{z} \\ G_{y} & G_{z} \end{array}\right|_{M}\left(x-x_{0}\right)+\left|\begin{array}{ll} F_{z} & F_{x} \\ G_{z} & G_{x} \end{array}\right|_{M}\left(y-y_{0}\right)+\left|\begin{array}{ll} F_{x} & F_{y} \\ G_{x} & G_{y} \end{array}\right|_{M}\left(z-z_{0}\right)=0\end{align}
例题
求曲线在点处的切线及法平面方程
将所给方程的两边对求导
\begin{align}\left\{\begin{array}{l} 2 x+2 y \cdot \frac{d y}{d x}+2 z \cdot \frac{d z}{d x}=0 \\ 1+\frac{d y}{d x}+\frac{d z}{d x}=0 \end{array}\right.\end{align}
移项化简后为
\begin{align}\left\{\begin{array}{l} y \frac{\mathrm{d} y}{\mathrm{~d} x}+z \frac{\mathrm{d} z}{\mathrm{~d} x}=-x \\ \frac{\mathrm{d} y}{\mathrm{~d} x}+\frac{\mathrm{d} z}{\mathrm{~d} x}=-1 \end{array}\right.\end{align}
由此得
\begin{align} \frac{\mathrm{d} y}{\mathrm{~d} x}=\frac{\left|\begin{array}{cc} -x & z \\ -1 & 1 \end{array}\right|}{\left|\begin{array}{ll} y & z \\ 1 & 1 \end{array}\right|}=\frac{z-x}{y-z}, \frac{\mathrm{d} z}{\mathrm{~d} x}=\frac{\left|\begin{array}{cc} y & -x \\ 1 & -1 \end{array}\right|}{\left|\begin{array}{ll} y & z \\ 1 & 1 \end{array}\right|}=\frac{x-y}{y-z} \\ \left.\frac{\mathrm{d} y}{\mathrm{~d} x}\right|_{(1,-2,1)}=0,\left.\frac{\mathrm{d} z}{\mathrm{~d} x}\right|_{(1,-2,1)}=-1 \\ \end{align}
从而切向量为
\begin{align}\overrightarrow{T}=(1,0,-1)\end{align}
切线方程为
\begin{align}\frac{x-1}{1}=\frac{y+2}{0}=\frac{z-1}{-1}\end{align}
法平面方程为
\begin{align}(x-1)+0 \cdot(y+2)-(z-1)=0\end{align}
化简后得
\begin{align}x-z=0\end{align}
曲面的切平面与法线
曲面为的情形
设为曲面上任意一点,在曲面上,通过点任取一条曲线
\begin{align}\Gamma:\left\{\begin{array}{l}x=\varphi(t)\\y=\psi(t)\\z=w(t)\end{array}\quad\alpha\leqslant t\leqslant\beta\right.\end{align}
对应参数为
则过的切线方程为
\begin{align}\frac{x-x_{0}}{\varphi^{\prime}\left(t_{0}\right)}=\frac{y-y_{0}}{\psi^{\prime}\left(t_{0}\right)}=\frac{z-z_{0}}{\omega^{\prime}\left(t_{0}\right)}\end{align}
切平面方程
\begin{align}F_{x}\left(x_{0}, y_{0}, z_{0}\right)\left(x-x_{0}\right)+F_{y}\left(x_{0}, y_{0}, z_{0}\right)\left(y-y_{0}\right)+ F_{z}\left(x_{0}, y_{0}, z_{0}\right)\left(z-z_{0}\right)=0\end{align}
法线方程
\begin{align}\frac{x-x_{0}}{F_{x}\left(x_{0}, y_{0}, z_{0}\right)}=\frac{y-y_{0}}{F_{y}\left(x_{0}, y_{0}, z_{0}\right)}=\frac{z-z_{0}}{F_{z}\left(x_{0}, y_{0}, z_{0}\right)}\end{align}
曲面法向量
\begin{align}\vec n=\left(F_{x}\left(x_{0}, y_{0}, z_{0}\right), F_{y}\left(x_{0}, y_{0}, z_{0}\right), F_{z}\left(x_{0}, y_{0}, z_{0}\right)\right)\end{align}
曲面的情形
令可见
\begin{align}F_{x}(x, y, z)=f_{x}(x, y), F_{y}(x, y, z)=f_{y}(x, y), F_{z}(x, y, z)=-1\end{align}
切平面方程为
\begin{align}f_{x}\left(x_{0}, y_{0}\right)\left(x-x_{0}\right)+f_{y}\left(x_{0}, y_{0}\right)\left(y-y_{0}\right)-\left(z-z_{0}\right)=0\end{align}
法线方程为
\begin{align}\frac{x-x_{0}}{f_{x}\left(x_{0}, y_{0}\right)}=\frac{y-y_{0}}{f_{y}\left(x_{0}, y_{0}\right)}=\frac{z-z_{0}}{-1}\end{align}
方向余弦
\begin{align}\cos \alpha=\frac{-f_{x}}{\sqrt{1+f_{x}^{2}+f_{y}^{2}}}, \quad \cos \beta=\frac{-f_{y}}{\sqrt{1+f_{x}^{2}+f_{y}^{2}}}, \quad \cos \gamma=\frac{1}{\sqrt{1+f_{x}^{2}+f_{y}^{2}}}\end{align}
例题
求球面在点处的切平面及法线方程
\begin{align}F(x,y,z)=x^{2}+y^{2}+z^{2}-14\end{align}
\begin{align}F_x=2x,F_y=2y,F_z=2z\end{align}
所以
\begin{align}\left.\vec{n}\right|_{(1,2,3)}=(2,4,6)\end{align}
所以在点处此球面的切平面方程为
\begin{align}2(x-1)+4(y-2)+6(z-3)=0\end{align}
即
\begin{align}x+2y+3z-14=0\end{align}
法线方程为
\begin{align}\frac{x-1}{1}=\frac{y-2}{2}=\frac{z-3}{3}\end{align}
即
\begin{align}\frac{x}{1}=\frac{y}{2}=\frac{z}{3}\end{align}
由此可见,法线经过原点(即球心)
求旋转抛物面在点处的切平面及法线方程
\begin{align}f(x,y)=x^{2}+y^{2}-1\end{align}
\begin{align}&\vec{n}=\left(f_{x},f_{y},-1\right)=(2x,2y,-1)\\&\left.\vec{n}\right|_{(2,1,4)}=(4,2,-1)\end{align}
所以在点处的切平面方程为
\begin{align}4(x-2)+2(y-1)-(z-4)=0\end{align}
即
\begin{align}4x+2y-z-6=0\end{align}
法线方程为
\begin{align}\frac{x-2}{4}=\frac{y-1}{2}=\frac{z-4}{-1}\end{align}